베르트랑 공준
베르트랑 공준 모든 자연수 $n$에 대하여, $n < p \le 2n$을 만족하는 소수 $p$가 존재한다. 증명 크게 7단계로 나누었다. Step 1. $n \le 4000$에 대하여 베르트랑의 공준이 성립함을 실험적으로 확인하자. 바로 앞의 소수의 $2$배보다 작은 소수들의 수열 $$2, 3, 5, 7, 13, 23, 43, 83, 163,$$ $$317, 631, 1259, 2503, 4001$$이 존재한다. 따라서 $n\le 4000$에 대하여 구간 $\left( n,2n \right]$은 위의 $14$개의 소수들 중 하나를 포함하므로, 베르트랑의 공준이 성립한다. Step 2. $2$ 이상인 자연수 $a$에 대하여 $a+1
2022. 9. 10.