소수의 무한성 증명
유클리드의 증명 귀류법으로 소수가 $n$개로 유한하다고 가정하고, 그 유한한 소수들의 집합을 $P=\left\{ p_1,\,p_2,\,\cdots,\,p_n \right\}$라 하고, 새로운 수 $N=p_1\,p_2\, \cdots \,p_n+1$을 정의하자. $N$은 $p_k$ ($k$는 $n$ 이하의 자연수)보다 큰 자연수이므로 $N \notin P$이다. 따라서 $N$은 합성수이므로, $\dfrac{N}{p_k} \in \mathbb{N}$이도록 하는 $p_k$가 존재해야 한다. $$\begin{eqnarray} && \dfrac{N}{p_k}=\dfrac{p_1\,p_2\,\cdots\,p_n+1}{p_k} \\ && =p_1\,p_2\,\cdots\,p_{k-1}\,p_{k+1}\,\cdots\..
2022. 8. 23.